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Abstract

Two-dimensional semi-infinite crack growth in an otherwise unbounded elastic linear continuum body is considered
under the assumption of the idealisation of infinitesimally small scale yielding. The purpose is to model and solve
analytically under a closed-form solution by means of a direct method the problem of Mode I crack growth at non-
constant velocity for all the range of velocities up to the dilatational wave velocity. As a result, the transonic regime is
implicitly taken into account. As many times previously mentioned in the literature, it is then verified that only Mode I
sub-Rayleigh crack propagation is physically possible. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two-dimensional semi-infinite crack growth in an otherwise unbounded elastic linear continuum body is
considered under the assumption of the idealisation of infinitesimally small scale yielding. This is a class of
related problems to the elastodynamics crack propagation (Broberg, 1999a; Freund, 1990). The opening
cracks are usually classified in three modes: the in-plane opening mode crack deformation (Mode 1), the in-
plane shearing mode (Mode II), and the anti-plane shearing mode (Mode III).

The purpose of this paper is to model and solve analytically the problem of Mode I crack growth at non-
constant velocity up to the dilatational wave velocity, including the transonic regime. Mode I is chosen
since it is often encountered in engineering structures wherecas Mode II and Mode III are most familiar
from earthquake slip events.

This class of problem has first been considered by Kostrov (1966). He tackled the problem of non-
constant expansion of a finite crack in an infinite body. He assumed Mode III loading and used a method
developed within the theory for supersonic flow and assumed that the cohesion modulus (Barenblatt,
1959a,b) is a unique function of time (note that later, Kostrov (1974) and Willis (1989) gave a solution for
Mode I under the same assumption). In a series of four papers (Freund, 1972a,b, 1973, 1974), Freund
delivered his theory for crack with non-constant velocity. He adopted the central idea of Eshelby’s theory
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(Eshelby, 1969) for Mode I crack growth assuming that the solution of a moving crack with non-constant
velocity can be found if only the solution of sudden crack propagation at constant velocity is known.
Freund made very clever use of superposition techniques. He introduced fundamental solutions to be used
as elements in superposition, and he used the principle of negative stress: a crack can be extended by first
making a cut with traction on its faces, equalling the stresses present before the cut, and then superpose the
same traction, but with opposite sign. Recently, with the help of this superposition scheme (Broberg,
1999b), Broberg gave a solution for intersonic Mode II crack acceleration. His solution is obtained by first
considering a self-similar problem, i.e. motion of a semi-infinite crack at constant velocity, under the action
of a constant crack free load, appearing behind the crack edge.

Here, unlike Broberg, Eshelby, Freund, Kostrov and Willis, a closed-form solution is directly formulated
without any physical asumption a priori on the nature of the singularity around the crack tip. The only
anticipated physical assumption is the behaviour of the elastodynamics field far away from the crack tip.

2. Statement of problem

Consider the body of a linear elastic material that contains a half plane elastodynamics crack but that is
otherwise unbounded (see Fig. 1). At the initial time, the crack faces are subjected to a suddenly applied
pressure and next expand. The material is stress free and at rest everywhere for negative times. The problem
is plane strain, symmetrical with respect to the Ox-axis (one will only consider the upper half space y > 0)
and then the boundary conditions write in the Cartesian Oxy-coordinate axes

U}Df(xay = 0+7t) =0o.(x,1) — Gf(xv 1),
oy(x,y =07,1) =0, (1)
u_(x,y=0%1) =u_(x,1),

where

o.(x,t) =0 if x < I(¢) elsewhere o, is unknown,
u_(x,2) =0 if x = I(¢) elsewhere u_ is unknown, (2)
or(x,t) =0 if x > I(f) elsewhere o, is known.

y
Crack tip
at the initial time
Crack
10)=0 X
y
Crack tip
at time t

Crack /

1(t) X

Fig. 1. Geometry of problem.
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and where ¢ and u are the stress tensor and displacement vector respectively which are represented by their
Cartesian components, the function /(¢) defines the crack length versus time. The applied pressure o, is
positive, i.e. the material is stretched. The stress ahead ¢, and the displacement behind u_ the crack tip are
two unknown functions. The stress function ¢, will be authorised to be singular only at the crack tip while
the displacement function ¥ must be continuous through the crack tip.
At high velocities, the inertial effects need to be taken into account, thus the elastodynamics field must be
solution of the following wave equations
3¢ ¢ 1 0% Ay Yy 1M
o N2 o 0 and el Q2 2 0 ®)
where ¢ and y are the dilatational potential and the vector shear potential respectively. The constants ¢4
and ¢, are the dilatational and shear wave velocities respectively.
Egs. (1)-(3) together define a mixed boundary value problem which will be solved by means of integral
transforms.

3. Application of integral transforms

Solution of the problem proceeds by application of a one-sided Laplace transform over time denoted by
an over-bar, and a double-sided Laplace transform over the x coordinate denoted by a star to the governing
partial differential equation (3) and boundary conditions (1). The one-sided Laplace transform of a given
function f'(¢) is written as

= /0 oof(t) exp(—st)dt, (4)

where the complex number s has a positive real part, i.e. Re(s) > 0. The imaginary part of a complex
number, say s, will be noted Im(s).

A particular attention is given here for the double-sided Laplace transform of the stress and displace-
ment based on hindsight. One defines

+00
o' (p,s) = S"/ G r(x,s) exp(—spx)dx,
oo (5)
u (p,s) = s”“/ u_(x,s)exp(—spx)dx,

o]

where p is a complex number and the exponent # is an integer. The domain of convergence of these integrals
will be subsequently defined.

Then, the transformed solution applied to the boundary conditions on y = 07 gives rise to the following
differential system

(12 = 1)) (p.y.s) + 25550 —2p | = (&1(pos) — 5(p.5)).
[2spd¢ W) 4 PV 2p2 (s )] =0, (6)

y=0+
[d‘b 229 spy (p, v, )} . =E2)

-+

where u is the Lamé constant.
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One seeks for solutions of (3) decaying as y — +oo under the form

B (p5) = A exps). U (ps) =y Blp.s) exp(—siy). )
where

a=1/1/cF —p* (Re(a) 20) and p=,/1/c2—p* (Re(p) =0). (8)
The real part of the multivalued functions «(p) and f(p) is chosen positive. This defines their associated
branch cuts on the real-axis of the complex p-plane, ie. | — oo, —1/cq] U[l/c4,4+00[ and | — oo, —1/

¢s] U [1/¢s, +o0[. If p approaches a cut in the right (left) half plane with Im(p) — 0" then the limiting value
of either o or f is a negative (positive) value.
With n = 2, one obtains the Wiener—Hopf equation of our mixed boundary value problem

6-1(17’ S) + 6-;‘(1775) = _,chi—((ﬁ))u*(ﬁas)y (9)
where
R(p) = 4p*a(p)B(p) + (1) — 2p*)° (10)

is the Rayleigh function.

Here, we point out that all our reasoning up to Eq. (9) is valid only in a common strip of analyticity in
the complex p-plane, if such a strip exists, of 6% and u*. A strip of convergence can be found by the
knowledge a priori of the asymptotic behaviour of the elastodynamics field in the far field (far away from
the crack tip). This follows from the fact that, given a point in the far field, both the displacement and the
stress are then governed by the first disturbance which reaches a such point (Freund, 1990; Achenbach,
1993). In the stationary crack problem, (/(¢) = 0, V¢), an elementary analysis shows that ¢* and u* are
regular for Re(p) > —1/cq4 and Re(p) < 0 respectively as illustrated in Fig. 2. The strip of analyticity is then
—1/cq < Re(p) < 0 (Freund, 1990). We claim that, for a moving crack, the strip is unchanged. Indeed, let
us suppose the wave fronts in the far field. Given y positive, for large negative values of x nothing is
changed with respect to the stationary crack problem. For large positive value of x, even if the crack tip is
moving, the first arriving disturbance will be the dilatational cylindrical wave front emanating from the
crack tip at the initial time, i.e. the time when the crack begins to expand. This obviously is true if the crack
tip velocity is smaller than the dilatational wave velocity. The strip of analyticity of the Wiener—Hopf
equation (9) is then defined as follows

—1/cq < Re(p) < 0. (11)

1 I ]
! | | - o
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i | |
1 | |

Fig. 2. The complex p-plane showing the location of the branch cuts (in bold) of the analytic functions involved in the Wiener—Hopf
equation (9), i.e. Fx, 67, #" and &}, which applies in the strip —1/cq < Re(p) < 0.
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In a first time, one will try to seek for the Green’s function, i.e. the response to an applied spatially
uniform pressure written under the form

oy(x,t) = aoH()H(I(t) — x), (12)

where H refers to the Heaviside step function. More general functions would not be suitable for direct
analytic treatment.

4. Case of an applied spatially uniform pressure

The boundary conditions (1) write as follows by using Eq. (12)
0, (x,0,8) =04 (x,t) —aoH(t)H(I(t) — x),
0y (x,0,¢) =0, (13)
u_(x,0,6) =u_(x,1).

Since the function /(¢), which determines the crack length, is necessarily continuous, positive and mono-
tonic, it has then an inverse function, say #, with the following identities

t=n), [nx)=x, n(@)=rtand y'(x)=1/I'(t) with n(x) = 0 if x<0. (14)
The prime denotes the derivative, which can be discontinuous. Thus the derivative /'(¢) can admit jumps.
Note that one will have the condition

I'(t) <cq W, (15)
which traduces that a supersonic crack is not considered. This does not exclude, however, a transonic crack,

Le. ¢ < I'(t) < cq.
Now, with the choice of n = 1 in Egs. (5) and (7), the Wiener—Hopf equation can be written as follows

[ o oexpstmoa+ % [ exp slat) + pr () dx
——czR—(p) +00171 X,S)exp —s|n(x X
=SB [ s exp—slite) + po (16)

with

5p.5) = 22 [ exp —shitx) + ()

S P J-
+00
o, (p,s) = s/ 7. (x,s)exp —s(px)dx, (17)
oo
' (p,s) =5 _(x,s)exp —s(px) dx,

where the method to obtain &}, is detailed in Appendix A.

The Wiener-Hopf technique (Nobel, 1958) consists to factorise (see Appendix B) the « and R functions
on the right-hand side of Eq. (16) in order to obtain an appropriate form whose one side is a regular
function in Re(p) > —1/cq, say + domain, and the other is a regular function in Re(p) < 0, say — domain.
These manipulations transform Eq. (16) under the form

Q. (p.s) + 2(p,s) = ‘%YT%’ h
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where 4 = 2u(l — (¢s/cq)), with

—%

1, — . — 1,
Q+(p,s):;a+(p,s),QH(p,s):saH(p,s) and U_(p,s) :S—zuf(p,s). (19)
One can rewrite Eq. (18) as follows

U (p,s)
“(p)

At this stage, the resolution of Eq. (20) cannot be pursued further without changes on the nature of the
applied spatially uniform pressure defined in Eq. (13) (see Appendix C). Thus to avoid all difficulties in our
proof, one replaces the constant applied stress g, with a time dependant stress f(¢) which is positive,
bounded, i.e. o0/ (¢) < gy V¢, and such that its support is bounded, i.e. 3¢y/f(¢) = 0 Vt = ¢. In this case,
one is no longer seeking for the Green’s function of the problem associated to the Heaviside step function
H(¢), but the nature of the applied pressure becomes more realistic since it is then bounded over time. One
defines then ﬁ;, which replaces Q,,, as follows

E(p)[Q, (p.5) + T (pos)| = i (20)

Sﬁ@J);/Q}WQDW@NHPﬂM@)HMH@ﬁM (21)

The only one singularity of the mixed function Q}‘» to take into account in the + domain is then the simple
pole at p = 0 (see Appendix C), which is analytic elsewhere. This pole can, however, be removed by writing

Fi(p)/p = [Fi(p) = F(0)]/p+ F:(0)/p, (22)

where the first (second) term on the right-hand side of Eq. (22) is analytic in the +(—) domain.
Now, Eq. (20) rearranges in the following manner

U (p,s)
F(p)

The left (right)-hand side of Eq. (23) is regular in the +(—) domain. Because of the equality in the strip of
overlap both sides of Eq. (23) represents one and the same entire function according to the principle of
analytical continuation (Mclachlan, 1953).

At this stage, one recalls that in the particular case of a stationary crack with f(¢) = ooH(?), .Q;(E @;,)
reduces to gy/p and

Q(p,5)IF(p) = Fo(0)] + F1 () Q.. (p,5) = ~2(p, 5)F.(0) — 2

(23)

Jim [ (p.s) o< [p| 2, lim (O ()| oc [p| ¥ with lim [Fu(p)] o [p] 1, (24

where |p| is the modulus of p. Since it can be verified that both sides of Eq. (23) tend at zero as |p| — oo
then, from Liouville’s theorem, one concludes that both sides are identically null. No we claim that this
result is unchanged if Q; has the form

1 +00

;Aum@wmwwwm+mw, (25)

since the convergence is stronger than 1/|p| as |p| — oo (see Appendix D).
Then the solution of Eq. (23) writes

Q. (p,s) = Q(p,9)[F.(0)/F,.(p) — 1],

. 1 . (26)
U= (p.5) = = F-(O)F () @)(p,5).
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Focusing our attention in a first time on the stress, one can rewrite the first relation of Eq. (26) under the
form

/ 4 (0,5) exp —s(po) do = / ) )4 (p) exp —sin(y) + prld, (27)
with
5, (p) = }) F,(0)/F (p) — 1], (28)

where @w and v are free variables which just describe the domain of integration, and the constant
F,(0) = (1 —x)""\/ea(1 = 2x)/2 where x represents Poisson’s ratio.

4.1. Inversion of the transforms. extraction of o,

Let us take the double-sided inverse Laplace transform of Eq. (27) both on the left- and right-hand sides

+00 1 &+ioo ~
| oy / 3. (@,5) exp —s[p(w — )] dp

= [ [z e —stit) + oo - x)ap (29)

where 27 refers to the length of the unit circle and ¢ is a real number in the strip defined by Eq. (11). Both
the inner integrals on the left- and right-hand sides of Eq. (29) reduce from Cagniard’s technique (Aki and
Richards, 1980) with the change of variables ¢ = p(w —x) and ¢ = 5(v) + p(v — x) respectively (see Ap-
pendix E). One obtains

N L[ £ ()

: G (w,s)dw =
in)_ o o—x T Jo vV—x

Im[Z, (p)]H (2 = n(v))dv, (30)

which we rewrite for brevity as follows

+00 +00
/ left(w)dw = / right(v) dv. (31)
—o0 0
But H(t — n(v)) = 0if r < n(v) or v > I(¢). Consequently,
right(v) =0 for v > I(¢), (32)
and
+00
/ right(v)dv = 0. (33)
1)
One has then the following result
+00 (1)
/ left(w)dw = / right(v) dv. (34)
—00 0

Now, let us consider the integral on the left-hand side of Eq. (30) with w as a complex variable. To evaluate
it, one chooses a contour of integration as shown in Fig. 3. From Cauchy’s theorem the integral along a
closed contour is null if no poles are encircled. This is traduced by
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7

O lzt) X

Fig. 3. Contour of integration in the complex w-plane to reduce the left-hand side of Eq. (30). The rays of the large and small half-
circles tend at infinity and zero respectively.

(1) +o0
/ cdo+ / e do+ / . do — inRes[left(@)], . =0, (35)
r - I

00 1)

where it is anticipated that the real pole at w = x is the only one singularity in the integrand and o, is
expected to be analytic in the complex w-plane.
Now, from Jordan’s lemma

/r...dw:O, (36)

in accordance with the principle of causality, i.e. given 7, o, (|o|,) = 0, ¥Y|w| > cq4t.
The second term of Eq. (35) is null by assumption since

o (w,t)=0 for w < I(t). (37)
The third term is equal to the right-hand side of Eq. (34), and then

—inRes[ — o;(w,t)] = —ino, (x,1). (38)
Note from Eq. (37) that the Residue is null in Eq. (38) if x < (¢). Finally, one has
L £ ()’ (v) t—n(v)
(7+(x, t) —; /O\ ?Im Z+<v—x> dV forx > l(t), (39)
=0 elsewhere.

One can simplify Eq. (39) with the help of Eq. (14) by writing

t=n(), o=I) and t=y(I(1)) (40)
and deduces
ooty =+ [ L i (pacsite— 1), (41)
where
t—1

I, (p) =pZ (p) and p= (42)

I(r) —x’

The function IT, becomes imaginary if the square root function o, (p) = \/1/cq + p becomes imaginary.
This is realised if p < —1/¢y, i.e. from 7 = 0 to the only one time 7, which is solution of
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V(t) = )%1(1_20) =c¢q for 7y €10,4. (43)

There is only one 1, since the function /(¢) is necessarily increasing and /'(7) < ¢4, V7 € [0, #]. Consequently,
one has not to integrate up to the time ¢ but up to 7. Such a value only exists if

x>1(t) and x<cqt (44)
with the important particular case on the crack tip
19—t if x — (). (45)

The support of the domain of integration in Eq. (41) can be then clarified and the integral written as follows

o, (x,t) = /IO oo dtH(t — to)H (x — 1(#))H (cqt — x) (46)
0

with

79 € [0,4]/V (1) = cq, (47)
as defined in Eq. (43), and where

I'(7) < cq. (48)
We point out that in transonic regime

It € [0,4]/ = 1/es <p(= = 1/V (1)) < —1/eq (49)

and the integrand of S, in Eq. (B.4) becomes singular. But it can be observed that S, and S_ are, however,
never singular simultaneously. One can calculate this exceptional case by employing

S(p)

S+ (p) S, (p) ) (50)
where one chooses in the denominator the S-function, here S_, which is not defined by a singular inte-
gral. The transonic regime is implicitly taken into account without anymore modification. This would not
have been the case if one had started with a moving crack at constant velocity, since a pole appears then
between —1/¢s and —1/c4. Thus its contribution needs to be evaluated separately to extract the Cauchy
principal value of S, and the Wiener-Hopf equation must be rearranged in consequence (Broberg, 1999a,b).

At this stage, the result for the stationary case, i.e. I(¢) = 0 V¢, with f(¢) = 69, can be refined with the
change of variable

0 = — T, (51)
and then the integral rewrites in Eq. (46) as follows
-1 [ 0
a.(x,1) = /X/Cd Im{2+<—)—c>} dOH (cqt — x). (52)

Expression (52) is exactly the response to
ooH (t)H (—x) (53)

which was first given by Maue (1954).
Now, let us study more in detail what is happening at the crack tip which is the only singular point of the
problem? Indeed, the calculations show the evidence of a singularity at x = I(¢) since

. t—1 _

leads to the following result
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pom{ Ll - 5 ), <ol o )

=00 if t <,
=0 if =1,

(55)

where one recalls that ¢, is the time when the applied pressure vanishes.

One knows from Eq. (45) that if x — I(¢) then the domain of integration is [0, . Thus the stress is
singular at the crack tip while ¢ < ¢, since a logarithmic singularity is observed in Eq. (55). If the crack stops
before then the stress is singular up to #y, else if it stops after ¢, say ¢, then the stress becomes finite from ¢,
and decreases up to ¢;. This is not in contradiction with Maue’s results (1954). A particular important study
leading to the dynamic stress intensity factor follows but this was not our aim. One can recall, however, that
a crack can both open and propagate only if both the stress o, just in front of the crack tip and the dis-
placement u_ just behind work together. At the starting point, i.e. ¢ = 0 with /(¢) = 0, this condition can be
verified from the stationary case. The tensile stress is then positive. Thus, when the crack is further
propagating, if one of them, i.e. o or u_, change sign then crack propagation is not possible. It is expedient
to see from Eq. (B.2) that Im[IT, (p = —1//'(¢))] change sign when /'(z) = cg. Thus, if /'(¢) is continuous and
monotonic increasing, no solution is possible after the time when the Rayleigh wave velocity is reached.
Suppose now that /'(¢) increases abruptly from a sub-Rayleigh to an intersonic velocity. Then, from Egs.
(8), (10), (50) and (B.2), it is straightforward to observe a change of sign. One verifies the well-known result
that only Mode I sub-Rayleigh crack propagation is physically possible. Note that in parallel works one has
written the problem for Mode II and confirmed that intersonic regime is possible.

Of course, one has assumed the cinematic of the crack tip by a given hypothetical equation of motion /()
but obviously, only the establishment of a crack tip equation of motion in a theory of crack dynamics can
answer definitively about either the advance or the stop of cracks.

4.2. Inversion of the transforms: extraction of u_

The described previous procedure for the calculation of ¢, can be identically repeated to seek for u_.
Note, however, that due to the definitions in Eq. (5), one has directly the displacement velocity
u' = Ou(x,t)/0t and not u_.

The difference is that here the square root function a_(p) = \/1/cq — p becomes imaginary if p > 1/¢q.
Starting back from Eq. (26), one gives the following final result

_L e

u (x,1) = o Im[A_(p)]dtH(I(to) — x)H (¢t — t0)H (cqt + x), (56)
where

M) = FROF ). p= (57)
with

w0 € 0,4/ V(%) = —ca. (58)

Note that, in transonic regime, Eq. (50) must be used with a change of sign, i.e. S_(p) = S(p)/S.(p).

In general, given x < I(¢), if © — n(x) then the integrand in Eq. (56) vanishes in virtue of Eq. (24).
However, on the crack tip, 19 — ¢, and this integrand becomes singular. But in virtue of Eq. (45), the
domain of integration vanishes while this was not the case for the stress o, in Eq. (46). The displacement
velocity «' is then null as soon as the displacement since u_ is null at the initial time. This is perfectly in
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accordance with the continuity of the displacement through a crack tip since u_ is by assumption null in
front of the crack. One can then verify

lirlr(l) u_(x,t) =u_(I(1),t) = 0. (59)
X—I(t
It does not matter that the integrand in Eq. (56) is singular or not, the boundary condition (59) remains

valid. More generally, Egs. (55) and (59) together are consistent with the physical boundary conditions in
the vicinity of a crack tip.

5. Conclusion

The elastodynamics field ahead a two-dimensional semi-infinite crack in-plane opening mode with a non-
uniform velocity in an unbounded medium has been formulated under a closed-form by means of a direct
method. As a result, the developed method implicitly takes into account the transonic regime.

However, although only the Mode I was considered, the developed method is also suitable for Modes 11
and III propagation.
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Appendix A. Note on the result: 6(x — () = ' (x)d(t — y(x))

Let us start with the Dirac delta function

o(x —1(2)). (A.1)
The double-sided Laplace transform over the x coordinate of Eq. (A.1) writes

exp —s[pl(1)]. (A.2)
The one-sided Laplace transform over time of Eq. (A.2) writes

+00
/ exp —s{pl(t) + 1 dt. (A3)
0

If in Eq. (A.3) one operates the change of variable

t=n(x) with x =1(z), (A4)
then

dr = 7/ (x) dx, (A.S5)

and Eq. (A.3) rewrites

/ " (x) exp —slpx + nH )] dx / () exp sy + () (x) dx.
- - (A.6)

-/ ) exp —slpx 4 () .

This is exactly the transform of

1 (x)o(t — n(x)). (A7)
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One has then the following relation between Eq. (A.1) and (A.7)
6(x = 1(2)) = ' (x)(t — n(x)). (A-8)

One can repeat the same reasoning to write the Laplace transform of H(/(¢) — x) under the form

/OHC ’7/;;6) exp —s[px + n(x)]dx, (A9)

where only the product sp differs from Eq. (A.6).

Appendix B. Factorisation of the Wiener—Hopf equation

The factorisation of the function o is elementary. One has

+=+/1/ca £ p, o= . (B.1)

The factorisation of the Rayleigh function R is more complicated but is now became standard (Freund,
1990; Achenbach, 1993). One only gives the following final result
Ot

Fr=———— B.2
T e £95-0) (B2
with
_ R _ 2 >
Si;c(l/czR—pz)iblsﬂ k=2(1/c; —1/c3), (B.3)
where
—1 (Ve 422\/(22 = 1/3)(1/2 = 22) | dz
= i tg B.4
Sj: exp{ - /1/Ed [ (1/02 222) Z:l:p ) ( )
and the Rayleigh wave velocity cr is solution of the Rayleigh equation (10).
Appendix C. Note on the analyticity of ﬁ;
Let us write 5_2* from Egs. (19) and (21) as follows
/ f(n x) exp —s[n(x) + px]dx (C.1)
with
. 00 “+00 ,
Qy(p.s) = o ' (x) exp —s[n(x) + px]dx. (C2)
0
From Appendix A, the integrals above can write under the form
. 1 +00
Q:(p,s) :;) / f(¢)exp —s[pl(¢t) + ¢]dt (C.3)
0
and
. 00 +00
Q. (p,s) = o / exp —s[pl(t) + ¢]dt (C4)
0

respectively.
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The pole at p = 0 is obvious but, is ﬁ; analytic elsewhere?

In a first time, consider the function f'as a constant, say gy, as one chose at the beginning in Eq. (13) and
carried out in Eq. (C.2).

Two cases can then be considered: the crack tip either stops after a transient period or accelerates up to a
quasi-steady-state regime and never stops. The first case traduces by

0<1(r) < (k) (C.5)
and the second by

0</'(¢) < cq, with tlim I(t) =v(<cq), Le. Ve >0, 3/t >ty = |I'(t) —v| <, (C.6)

where #, and v are constants, and the derivative /'(¢) is monotonic.

In the first case, given s positive, Vp the integrand in Eq. (C.4) is summable (Arsac, 1966) and then the
integral is finite. One concludes that if the crack stops then the integral in Eq. (C.2) has no poles in the
complex p-plane and ﬁ; is then regular everywhere.

The second case belongs to the class of self-similar problems when the steady-state regime is taken into
account only. Although it will not be considered here, one can just say that the integration in Eq. (C.4)
becomes elementary. Indeed, with /() = vz, V¢, Eq. (C.4) becomes

— ao
Q. (p,s) =———. C.7
It occurs a pole at p = —1/v and the rearrangement of the Wiener-Hopf equation is no longer so easy

(Baker, 1962). Baker partially solved the problem by rewriting it with respect to the crack tip coordiantes.
Partially, because he could not take into account the transonic regime.

As a more realistic example, one could take /() = v(\/#> + £ — ty) which linearly behaves as v(r — f,) if
t — oo. It is then immediate to observe that the integrand in Eq. (C.4) is not summable if Re(p) < 1/v, and
Q,, becomes then regular in Re(p) > —1/v only (see Fig. 2). The left- and right-hand sides of the modified
Wiener-Hopf equation (23) are now regular in Re(p) > —1/v and —1/v < Re(p) < 0 respectively (with
v < ¢q). Consequently, Eq. (11) is unmodified but Liouville’s theorem, which will help us in the next, loses
all its utility.

This motivated us to replace ooH (¢) with a function f'(¢), which has a bounded support, and define @, in
Eq. (21) as carried out in Eq. (C.1). The integrand in Eq. (C.3) becomes then summable and the function @;
is analytic in the whole complex p-plane, except of course at p = 0.

Appendix D. Note on the behaviour of 2, at infinity

From Appendix A, the function @;(p, s) can write under the form

1 +00
I_?/ f(¢) exp —s[pl(t) + t] dt. (D.1)
0
But, let us consider first the following integral
1 +00
> / exp —s[pi(t) + #]dr. (D.2)
0

Since by assumption /() < cq, then V¢, I(¢) < cqt and, given s positive, it follows the inequalities

+0o0 +oo e
%/O exp—st[pcd+1]dt<%|/o eXP—S[pl(f)H}deﬁ/o exp(—st)dr, (D:3)
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or
;<L/+OO exp —s|| |l(t)+t]dt<L (D.4)
sipl(plea+1) ol Jo P = 5] '

from which, one immediately concludes that the integral in Eq. (D.2) tends at zero if one lets |p| tend to
infinity. Given the function f positive and bounded, say f(¢) < gy, V¢, then the integral in Eq. (D.1) also
tends at zero.

Appendix E. Inversion of the left (1) and right (2) hand sides of Eq. (29)
+ioco
(1) Inversion of / 5G4 (w,s)exp —s[p(w — x)]dp

—ioo

With the change of variable first introduced by Cagniard in seismology (Cagniard, 1939)
plo—x)=t (E.1)

and the contour of integration shown in Fig. 4, one deduces from Cauchy’s theorem

+ico 100 dp
s/ o, (w,s)exp—s[p(w —x)]dp = 2s/ a.(w,s) & exp(—st) dt,
- 0

io0 E.2
_ 2 /+oc (w,s) exp(—st)ds "
o2, 7, (w,s)exp(—st)dt.
The integral on the right-hand side of Eq. (E.2) is trivial. One obtains
2 5.9 (E3)
N .
o —x + )

which is nothing else but the one-sided Laplace transform over time of (2/(w — x))o. (o, ). We stress here
that it is anticipated that ¢, can be singular only on w = x.

+ico

(2) Inversion of 2}—7[ / i (p)exp —sn(v) + p(v — x)]dp

How to invert this kind of integral is now became standard in seismology (Aki and Richards, 1980) and
elastodynamics (Achenbach, 1993). Again, as above, from the new change of variable

nw)+plv—x)=t¢ (E4)

and the contour of integration shown in Fig. 5, one deduces from Cauchy’s theorem

s [ ep s+ p = ldp = [ L iz ()~ () exp(—s1) .
(E.5)
where
ple) =10 (E)

and Scharwz’s reflexion principle, i.e. £, (p) = £, (p) has been used. The over-bar refers here to the con-
jugate imaginary part.
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Fig. 4. Contour of integration in the complex p-plane to reduce the inner integral on the right-hand side of Eq. (29). In bold are
represented the branch cuts of o, and 8, and their branch points at —1/cq and —1/c, respectively. The rays of the truncated large half-
circle and small circle tend at infinity and zero respectively.

Fig. 5. Contour of integration in the complex p-plane to reduce the inner integral on the left-hand side of Eq. (29). The rays of the two
quarter-circles tend at infinity. The case w —x > 0 is represented.
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The right-hand side of Eq. (E.5) is nothing else but the one-sided Laplace transform over time of
11

TV—X

Im[Z, (p()JH (£ = n(v))- (E7)
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