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Abstract

Two-dimensional semi-infinite crack growth in an otherwise unbounded elastic linear continuum body is considered

under the assumption of the idealisation of infinitesimally small scale yielding. The purpose is to model and solve

analytically under a closed-form solution by means of a direct method the problem of Mode I crack growth at non-

constant velocity for all the range of velocities up to the dilatational wave velocity. As a result, the transonic regime is

implicitly taken into account. As many times previously mentioned in the literature, it is then verified that only Mode I

sub-Rayleigh crack propagation is physically possible. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two-dimensional semi-infinite crack growth in an otherwise unbounded elastic linear continuum body is
considered under the assumption of the idealisation of infinitesimally small scale yielding. This is a class of
related problems to the elastodynamics crack propagation (Broberg, 1999a; Freund, 1990). The opening
cracks are usually classified in three modes: the in-plane opening mode crack deformation (Mode I), the in-
plane shearing mode (Mode II), and the anti-plane shearing mode (Mode III).

The purpose of this paper is to model and solve analytically the problem of Mode I crack growth at non-
constant velocity up to the dilatational wave velocity, including the transonic regime. Mode I is chosen
since it is often encountered in engineering structures whereas Mode II and Mode III are most familiar
from earthquake slip events.

This class of problem has first been considered by Kostrov (1966). He tackled the problem of non-
constant expansion of a finite crack in an infinite body. He assumed Mode III loading and used a method
developed within the theory for supersonic flow and assumed that the cohesion modulus (Barenblatt,
1959a,b) is a unique function of time (note that later, Kostrov (1974) and Willis (1989) gave a solution for
Mode I under the same assumption). In a series of four papers (Freund, 1972a,b, 1973, 1974), Freund
delivered his theory for crack with non-constant velocity. He adopted the central idea of Eshelby’s theory
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(Eshelby, 1969) for Mode I crack growth assuming that the solution of a moving crack with non-constant
velocity can be found if only the solution of sudden crack propagation at constant velocity is known.
Freund made very clever use of superposition techniques. He introduced fundamental solutions to be used
as elements in superposition, and he used the principle of negative stress: a crack can be extended by first
making a cut with traction on its faces, equalling the stresses present before the cut, and then superpose the
same traction, but with opposite sign. Recently, with the help of this superposition scheme (Broberg,
1999b), Broberg gave a solution for intersonic Mode II crack acceleration. His solution is obtained by first
considering a self-similar problem, i.e. motion of a semi-infinite crack at constant velocity, under the action
of a constant crack free load, appearing behind the crack edge.

Here, unlike Broberg, Eshelby, Freund, Kostrov and Willis, a closed-form solution is directly formulated
without any physical asumption a priori on the nature of the singularity around the crack tip. The only
anticipated physical assumption is the behaviour of the elastodynamics field far away from the crack tip.

2. Statement of problem

Consider the body of a linear elastic material that contains a half plane elastodynamics crack but that is
otherwise unbounded (see Fig. 1). At the initial time, the crack faces are subjected to a suddenly applied
pressure and next expand. The material is stress free and at rest everywhere for negative times. The problem
is plane strain, symmetrical with respect to the Ox-axis (one will only consider the upper half space y > 0)
and then the boundary conditions write in the Cartesian Oxy-coordinate axes

ryyðx; y ¼ 0þ; tÞ ¼ rþðx; tÞ � rf ðx; tÞ;
rxyðx; y ¼ 0þ; tÞ ¼ 0;

u�ðx; y ¼ 0þ; tÞ ¼ u�ðx; tÞ;
ð1Þ

where

rþðx; tÞ ¼ 0 if x < lðtÞ elsewhere rþ is unknown;

u�ðx; tÞ ¼ 0 if xP lðtÞ elsewhere u� is unknown;

rf ðx; tÞ ¼ 0 if x > lðtÞ elsewhere rf is known:

ð2Þ

Fig. 1. Geometry of problem.
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and where r and u are the stress tensor and displacement vector respectively which are represented by their
Cartesian components, the function lðtÞ defines the crack length versus time. The applied pressure rf is
positive, i.e. the material is stretched. The stress ahead rþ and the displacement behind u� the crack tip are
two unknown functions. The stress function rþ will be authorised to be singular only at the crack tip while
the displacement function u� must be continuous through the crack tip.

At high velocities, the inertial effects need to be taken into account, thus the elastodynamics field must be
solution of the following wave equations

o2/
ox2

þ o2/
oy2

� 1

c2d

o2/
ot2

¼ 0 and
o2w
ox2

þ o2w
oy2

� 1

c2s

o2w
ot2

¼ 0; ð3Þ

where / and w are the dilatational potential and the vector shear potential respectively. The constants cd
and cs are the dilatational and shear wave velocities respectively.

Eqs. (1)–(3) together define a mixed boundary value problem which will be solved by means of integral
transforms.

3. Application of integral transforms

Solution of the problem proceeds by application of a one-sided Laplace transform over time denoted by
an over-bar, and a double-sided Laplace transform over the x coordinate denoted by a star to the governing
partial differential equation (3) and boundary conditions (1). The one-sided Laplace transform of a given
function f ðtÞ is written as

�ff ðsÞ ¼
Z þ1

0

f ðtÞ expð�stÞdt; ð4Þ

where the complex number s has a positive real part, i.e. ReðsÞP 0. The imaginary part of a complex
number, say s, will be noted ImðsÞ.

A particular attention is given here for the double-sided Laplace transform of the stress and displace-
ment based on hindsight. One defines

�rr�
þ;f ðp; sÞ ¼ sn

Z þ1

�1
�rrþ;f ðx; sÞ expð�spxÞdx;

�uu��ðp; sÞ ¼ snþ1
Z þ1

�1
�uu�ðx; sÞ expð�spxÞdx;

ð5Þ

where p is a complex number and the exponent n is an integer. The domain of convergence of these integrals
will be subsequently defined.

Then, the transformed solution applied to the boundary conditions on y ¼ 0þ gives rise to the following
differential system

ð1=c2s � 1=c2dÞs2 �//
�ðp; y; sÞ þ 2 d2 �//�ðp;y;sÞ

dy2 � 2sp d �ww�ðp;y;sÞ
dy

h i
y¼0þ

¼ 1
lsn �rr�

þðp; sÞ � �rr�
f ðp; sÞ

� �
;

2sp d �//�ðp;y;sÞ
dy þ d2 �ww�ðp;y;sÞ

dy2 � s2p2 �ww�ðp; y; sÞ
h i

y¼0þ
¼ 0;

d �//�ðp;y;sÞ
dy � sp �ww�ðp; y; sÞ

h i
y¼0þ

¼ �uu��ðp;sÞ
snþ1 ;

8>>>>><
>>>>>:

ð6Þ

where l is the Lam�ee constant.
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One seeks for solutions of (3) decaying as y ! þ1 under the form

�//�ðp; y; sÞ ¼ 1

snþ2
Aðp; sÞ expð�sayÞ; �ww�ðp; y; sÞ ¼ 1

snþ2
Bðp; sÞ expð�sbyÞ; ð7Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2d � p2

q
ðReðaÞP 0Þ and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2s � p2

q
ðReðbÞP 0Þ: ð8Þ

The real part of the multivalued functions aðpÞ and bðpÞ is chosen positive. This defines their associated
branch cuts on the real-axis of the complex p-plane, i.e. 	 �1;�1=cd	 [ ½1=cd;þ1½ and 	 �1;�1=
cs	 [ ½1=cs;þ1½. If p approaches a cut in the right (left) half plane with ImðpÞ ! 0þ then the limiting value
of either a or b is a negative (positive) value.

With n ¼ 2, one obtains the Wiener–Hopf equation of our mixed boundary value problem

�rr�
þðp; sÞ þ �rr�

f ðp; sÞ ¼ �lc2s
RðpÞ
aðpÞ �uu

�
�ðp; sÞ; ð9Þ

where

RðpÞ ¼ 4p2aðpÞbðpÞ þ ð1=c2s � 2p2Þ2 ð10Þ
is the Rayleigh function.

Here, we point out that all our reasoning up to Eq. (9) is valid only in a common strip of analyticity in
the complex p-plane, if such a strip exists, of �rr�

þ and �uu��. A strip of convergence can be found by the
knowledge a priori of the asymptotic behaviour of the elastodynamics field in the far field (far away from
the crack tip). This follows from the fact that, given a point in the far field, both the displacement and the
stress are then governed by the first disturbance which reaches a such point (Freund, 1990; Achenbach,
1993). In the stationary crack problem, ðlðtÞ ¼ 0; 8tÞ, an elementary analysis shows that �rr�

þ and �uu�� are
regular for ReðpÞ > �1=cd and ReðpÞ < 0 respectively as illustrated in Fig. 2. The strip of analyticity is then
�1=cd < ReðpÞ < 0 (Freund, 1990). We claim that, for a moving crack, the strip is unchanged. Indeed, let
us suppose the wave fronts in the far field. Given y positive, for large negative values of x nothing is
changed with respect to the stationary crack problem. For large positive value of x, even if the crack tip is
moving, the first arriving disturbance will be the dilatational cylindrical wave front emanating from the
crack tip at the initial time, i.e. the time when the crack begins to expand. This obviously is true if the crack
tip velocity is smaller than the dilatational wave velocity. The strip of analyticity of the Wiener–Hopf
equation (9) is then defined as follows

�1=cd < ReðpÞ < 0: ð11Þ

Fig. 2. The complex p-plane showing the location of the branch cuts (in bold) of the analytic functions involved in the Wiener–Hopf

equation (9), i.e. F
, �rr�
þ, �uu

�
� and �rr�

H , which applies in the strip �1=cd < ReðpÞ < 0.
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In a first time, one will try to seek for the Green’s function, i.e. the response to an applied spatially
uniform pressure written under the form

rH ðx; tÞ ¼ r0HðtÞHðlðtÞ � xÞ; ð12Þ
where H refers to the Heaviside step function. More general functions would not be suitable for direct
analytic treatment.

4. Case of an applied spatially uniform pressure

The boundary conditions (1) write as follows by using Eq. (12)

ryyðx; 0; tÞ ¼ rþðx; tÞ � r0HðtÞHðlðtÞ � xÞ;
rxyðx; 0; tÞ ¼ 0;

u�ðx; 0; tÞ ¼ u�ðx; tÞ:
ð13Þ

Since the function lðtÞ, which determines the crack length, is necessarily continuous, positive and mono-
tonic, it has then an inverse function, say g, with the following identities

t ¼ gðxÞ; l gðxÞð Þ ¼ x; g lðtÞð Þ ¼ t and g0ðxÞ ¼ 1=l0ðtÞ with gðxÞ ¼ 0 if x6 0: ð14Þ
The prime denotes the derivative, which can be discontinuous. Thus the derivative l0ðtÞ can admit jumps.
Note that one will have the condition

l0ðtÞ < cd 8t; ð15Þ
which traduces that a supersonic crack is not considered. This does not exclude, however, a transonic crack,
i.e. cs < l0ðtÞ < cd.

Now, with the choice of n ¼ 1 in Eqs. (5) and (7), the Wiener–Hopf equation can be written as followsZ þ1

�1
�rrþðx; sÞ exp�sðpxÞdxþ r0

p

Z þ1

�1
g0ðxÞ exp�s gðxÞ½ þ px	HðxÞdx

¼ �lc2s
RðpÞ
aðpÞ

Z þ1

�1
�uu�ðx; sÞ exp�s gðxÞ½ þ px	dx ð16Þ

with

�rr�
H ðp; sÞ ¼

1

s
r0

p

Z þ1

�1
g0ðxÞ exp�s½gðxÞ þ px	HðxÞdx;

�rr�
þðp; sÞ ¼ s

Z þ1

�1
�rrþðx; sÞ exp�sðpxÞdx;

�uu��ðp; sÞ ¼ s2
Z þ1

1
�uu�ðx; sÞ exp�sðpxÞdx;

ð17Þ

where the method to obtain �rr�
H is detailed in Appendix A.

The Wiener–Hopf technique (Nobel, 1958) consists to factorise (see Appendix B) the a and R functions
on the right-hand side of Eq. (16) in order to obtain an appropriate form whose one side is a regular
function in ReðpÞ > �1=cd, say þ domain, and the other is a regular function in ReðpÞ < 0, say � domain.
These manipulations transform Eq. (16) under the form

X
�
þðp; sÞ þ X

�
f ðp; sÞ ¼ �k

U
�
�ðp; sÞ

FþðpÞF�ðpÞ
; ð18Þ
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where k ¼ 2lð1� ðcs=cdÞÞ, with

X
�
þðp; sÞ ¼

1

s
�rr�
þðp; sÞ;X

�
H ðp; sÞ ¼ s�rr�

Hðp; sÞ and U
�
�ðp; sÞ ¼

1

s2
�uu��ðp; sÞ: ð19Þ

One can rewrite Eq. (18) as follows

FþðpÞ X
�
þðp; sÞ

h
þ X

�
f ðp; sÞ

i
¼ �k

U
�
�ðp; sÞ
F�ðpÞ

: ð20Þ

At this stage, the resolution of Eq. (20) cannot be pursued further without changes on the nature of the
applied spatially uniform pressure defined in Eq. (13) (see Appendix C). Thus to avoid all difficulties in our
proof, one replaces the constant applied stress r0 with a time dependant stress f ðtÞ which is positive,
bounded, i.e. 9r0=f ðtÞ < r0 8t, and such that its support is bounded, i.e. 9t0=f ðtÞ ¼ 0 8tP t0. In this case,
one is no longer seeking for the Green’s function of the problem associated to the Heaviside step function
HðtÞ, but the nature of the applied pressure becomes more realistic since it is then bounded over time. One
defines then X

�
f , which replaces X

�
H , as follows

X
�
f ðp; sÞ ¼

1

p

Z þ1

�1
f ðgðxÞÞg0ðxÞ exp�s½gðxÞ þ px	HðxÞdx: ð21Þ

The only one singularity of the mixed function �XX�
f to take into account in the þ domain is then the simple

pole at p ¼ 0 (see Appendix C), which is analytic elsewhere. This pole can, however, be removed by writing

FþðpÞ=p ¼ FþðpÞ½ � Fþð0Þ	=p þ Fþð0Þ=p; ð22Þ

where the first (second) term on the right-hand side of Eq. (22) is analytic in the þð�Þ domain.
Now, Eq. (20) rearranges in the following manner

X
�
f ðp; sÞ½FþðpÞ � Fþð0Þ	 þ FþðpÞX

�
þðp; sÞ ¼ �X

�
f ðp; sÞFþð0Þ � k

�UU �
�ðp; sÞ
F�ðpÞ

: ð23Þ

The left (right)-hand side of Eq. (23) is regular in the þð�Þ domain. Because of the equality in the strip of
overlap both sides of Eq. (23) represents one and the same entire function according to the principle of
analytical continuation (Mclachlan, 1953).

At this stage, one recalls that in the particular case of a stationary crack with f ðtÞ ¼ r0HðtÞ, �XX�
f � X

�
H

� 

reduces to r0=p and

lim
jpj!1

X
�
þðp; sÞ

�� �� / pj j�1=2; lim
jpj!1

�UU �
�ðp; sÞ

��� ��� / pj j�3=2 with lim
jpj!1

F
ðpÞj j / jpj�1=2; ð24Þ

where pj j is the modulus of p. Since it can be verified that both sides of Eq. (23) tend at zero as pj j ! 1
then, from Liouville’s theorem, one concludes that both sides are identically null. No we claim that this
result is unchanged if X

�
f has the form

1

p

Z þ1

0

f gðxÞð Þg0ðxÞ exp�s gðxÞ½ þ px	dx; ð25Þ

since the convergence is stronger than 1= pj j as pj j ! 1 (see Appendix D).
Then the solution of Eq. (23) writes

X
�
þðp; sÞ ¼ X

�
f ðp; sÞ Fþð0Þ=FþðpÞ½ � 1	;

�UU �
�ðp; sÞ ¼ � 1

k
Fþð0ÞF�ðpÞX

�
f ðp; sÞ:

ð26Þ
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Focusing our attention in a first time on the stress, one can rewrite the first relation of Eq. (26) under the
form Z þ1

�1
s�rrþðx; sÞ exp�sðpxÞdx ¼

Z þ1

0

f gðmÞð Þg0ðmÞRþðpÞ exp�s gðmÞ½ þ pm	dm; ð27Þ

with

RþðpÞ ¼
1

p
Fþð0Þ=FþðpÞ½ � 1	; ð28Þ

where x and m are free variables which just describe the domain of integration, and the constant
Fþð0Þ ¼ ð1� jÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdð1� 2jÞ=2

p
where j represents Poisson’s ratio.

4.1. Inversion of the transforms: extraction of rþ

Let us take the double-sided inverse Laplace transform of Eq. (27) both on the left- and right-hand sidesZ þ1

�1
dx

1

2ip

Z eþi1

e�i1
s�rrþðx; sÞ exp�s pðx½ � xÞ	dp

¼
Z þ1

0

f gðmÞð Þg0ðmÞdm 1

2ip

Z eþi1

e�i1
RþðpÞ exp�s gðmÞ½ þ pðm � xÞ	dp ð29Þ

where 2p refers to the length of the unit circle and e is a real number in the strip defined by Eq. (11). Both
the inner integrals on the left- and right-hand sides of Eq. (29) reduce from Cagniard’s technique (Aki and
Richards, 1980) with the change of variables t ¼ pðx � xÞ and t ¼ gðmÞ þ pðm � xÞ respectively (see Ap-
pendix E). One obtains

1

ip

Z þ1

�1

1

x � x
�rrþðx; sÞdx ¼ 1

p

Z þ1

0

f gðmÞð Þg0ðmÞ
m � x

Im½RþðpÞ	H tð � gðmÞÞdm; ð30Þ

which we rewrite for brevity as followsZ þ1

�1
leftðxÞdx ¼

Z þ1

0

rightðmÞdm: ð31Þ

But H t � gðmÞð Þ ¼ 0 if t < gðmÞ or m > lðtÞ. Consequently,

rightðmÞ ¼ 0 for m > lðtÞ; ð32Þ

and Z þ1

lðtÞ
rightðmÞdm ¼ 0: ð33Þ

One has then the following resultZ þ1

�1
leftðxÞdx ¼

Z lðtÞ

0

rightðmÞdm: ð34Þ

Now, let us consider the integral on the left-hand side of Eq. (30) with x as a complex variable. To evaluate
it, one chooses a contour of integration as shown in Fig. 3. From Cauchy’s theorem the integral along a
closed contour is null if no poles are encircled. This is traduced by

A. Moura / International Journal of Solids and Structures 39 (2002) 2419–2434 2425



Z
C
� � � dx þ

Z lðtÞ

�1
� � � dx þ

Z þ1

lðtÞ
� � � dx � ipRes leftðxÞ½ 	x¼x ¼ 0; ð35Þ

where it is anticipated that the real pole at x ¼ x is the only one singularity in the integrand and rþ is
expected to be analytic in the complex x-plane.

Now, from Jordan’s lemmaZ
C
. . . dx ¼ 0; ð36Þ

in accordance with the principle of causality, i.e. given t, rþð xj j; tÞ ¼ 0, 8 xj j > cdt.
The second term of Eq. (35) is null by assumption since

rþðx; tÞ ¼ 0 for x < lðtÞ: ð37Þ

The third term is equal to the right-hand side of Eq. (34), and then

�ipRes 1

x � x
rþðx; tÞ

� �
¼ �iprþðx; tÞ: ð38Þ

Note from Eq. (37) that the Residue is null in Eq. (38) if x < lðtÞ. Finally, one has

rþðx; tÞ ¼ 1

p

Z lðtÞ

0

f gðmÞð Þg0ðmÞ
m � x

Im Rþ
t � gðmÞ
m � x

� �" #
dm for x > lðtÞ;

¼ 0 elsewhere:

ð39Þ

One can simplify Eq. (39) with the help of Eq. (14) by writing

s ¼ gðmÞ; x ¼ lðsÞ and s ¼ g lðsÞð Þ ð40Þ

and deduces

rþðx; tÞ ¼
1

p

Z t

0

f ðsÞ
t � s

Im PþðpÞ½ 	dsHðx� lðtÞÞ; ð41Þ

where

PþðpÞ ¼ pRþðpÞ and p ¼ t � s
lðsÞ � x

: ð42Þ

The function Pþ becomes imaginary if the square root function aþðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cd þ p

p
becomes imaginary.

This is realised if p < �1=cd, i.e. from s ¼ 0 to the only one time s0 which is solution of

Fig. 3. Contour of integration in the complex x-plane to reduce the left-hand side of Eq. (30). The rays of the large and small half-

circles tend at infinity and zero respectively.
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V ðs0Þ ¼
x� lðs0Þ
t � s0

¼ cd for s0 2 ½0; t	: ð43Þ

There is only one s0 since the function lðtÞ is necessarily increasing and l0ðsÞ < cd, 8s 2 ½0; t	. Consequently,
one has not to integrate up to the time t but up to s0. Such a value only exists if

x > lðtÞ and x6 cdt ð44Þ
with the important particular case on the crack tip

s0 ! t if x ! lðtÞ: ð45Þ
The support of the domain of integration in Eq. (41) can be then clarified and the integral written as follows

rþðx; tÞ ¼
Z s0

0

. . . dsHðt � s0ÞH xð � lðtÞÞH cdtð � xÞ ð46Þ

with

s0 2 0; t½ 	=V ðs0Þ ¼ cd; ð47Þ
as defined in Eq. (43), and where

l0ðsÞ < cd: ð48Þ
We point out that in transonic regime

9s0 2 0; t½ 	=� 1=cs < pð ¼ � 1=V ðs0ÞÞ < �1=cd ð49Þ
and the integrand of Sþ in Eq. (B.4) becomes singular. But it can be observed that Sþ and S� are, however,
never singular simultaneously. One can calculate this exceptional case by employing

SþðpÞ ¼
SðpÞ
S�ðpÞ

; ð50Þ

where one chooses in the denominator the S-function, here S�, which is not defined by a singular inte-
gral.The transonic regime is implicitly taken into account without anymore modification. This would not
have been the case if one had started with a moving crack at constant velocity, since a pole appears then
between �1=cs and �1=cd. Thus its contribution needs to be evaluated separately to extract the Cauchy
principal value of Sþ and the Wiener-Hopf equation must be rearranged in consequence (Broberg, 1999a,b).

At this stage, the result for the stationary case, i.e. lðtÞ ¼ 0 8t, with f ðtÞ ¼ r0, can be refined with the
change of variable

h ¼ t � s; ð51Þ
and then the integral rewrites in Eq. (46) as follows

rþðx; tÞ ¼
�1
px

Z t

x=cd

Im Rþ

��
� h

x

��
dhHðcdt � xÞ: ð52Þ

Expression (52) is exactly the response to

r0HðtÞHð�xÞ ð53Þ
which was first given by Maue (1954).

Now, let us study more in detail what is happening at the crack tip which is the only singular point of the
problem? Indeed, the calculations show the evidence of a singularity at x ¼ lðtÞ since

lim
s!t

t � s
lðsÞ � x

� �
x¼lðtÞ

¼ � 1

l0ðtÞ ð54Þ

leads to the following result
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f ðtÞ lim
s!t

1

t � s
Im Pþ p

���
¼ t � s

lðsÞ � x

���
x¼lðtÞ

¼ f ðtÞIm Pþ p
��

¼ � 1

l0ðtÞ

��
lim
s!t

1

t � s

� �
;

¼ 1 if t < t0;

¼ 0 if tP t0;

ð55Þ

where one recalls that t0 is the time when the applied pressure vanishes.
One knows from Eq. (45) that if x ! lðtÞ then the domain of integration is 0; t½ 	. Thus the stress is

singular at the crack tip while t < t0 since a logarithmic singularity is observed in Eq. (55). If the crack stops
before then the stress is singular up to t0, else if it stops after t0, say t1, then the stress becomes finite from t0
and decreases up to t1. This is not in contradiction with Maue’s results (1954). A particular important study
leading to the dynamic stress intensity factor follows but this was not our aim. One can recall, however, that
a crack can both open and propagate only if both the stress rþ just in front of the crack tip and the dis-
placement u� just behind work together. At the starting point, i.e. t ¼ 0 with lðtÞ ¼ 0, this condition can be
verified from the stationary case. The tensile stress is then positive. Thus, when the crack is further
propagating, if one of them, i.e. rþ or u�, change sign then crack propagation is not possible. It is expedient
to see from Eq. (B.2) that Im Pþ p ¼ �1=l0ðtÞð Þ½ 	 change sign when l0ðtÞ ¼ cR. Thus, if l0ðtÞ is continuous and
monotonic increasing, no solution is possible after the time when the Rayleigh wave velocity is reached.
Suppose now that l0ðtÞ increases abruptly from a sub-Rayleigh to an intersonic velocity. Then, from Eqs.
(8), (10), (50) and (B.2), it is straightforward to observe a change of sign. One verifies the well-known result
that only Mode I sub-Rayleigh crack propagation is physically possible. Note that in parallel works one has
written the problem for Mode II and confirmed that intersonic regime is possible.

Of course, one has assumed the cinematic of the crack tip by a given hypothetical equation of motion lðtÞ
but obviously, only the establishment of a crack tip equation of motion in a theory of crack dynamics can
answer definitively about either the advance or the stop of cracks.

4.2. Inversion of the transforms: extraction of u�

The described previous procedure for the calculation of rþ can be identically repeated to seek for u�.
Note, however, that due to the definitions in Eq. (5), one has directly the displacement velocity
u0� � ouðx; tÞ=ot and not u�.

The difference is that here the square root function a�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cd � p

p
becomes imaginary if p > 1=cd.

Starting back from Eq. (26), one gives the following final result

u0�ðx; tÞ ¼
1

p

Z t0

gðxÞ

f ðsÞ
t � s

Im D�ðpÞ½ 	dsH lðs0Þð � xÞH tð � s0ÞH cdtð þ xÞ; ð56Þ

where

D�ðpÞ ¼
�1
k

Fþð0ÞF�ðpÞ; p ¼ t � s
lðsÞ � x

ð57Þ

with

s0 2 0; t½ 	=V ðs0Þ ¼ �cd: ð58Þ

Note that, in transonic regime, Eq. (50) must be used with a change of sign, i.e. S�ðpÞ ¼ SðpÞ=SþðpÞ.
In general, given x < lðtÞ, if s ! gðxÞ then the integrand in Eq. (56) vanishes in virtue of Eq. (24).

However, on the crack tip, s0 ! t, and this integrand becomes singular. But in virtue of Eq. (45), the
domain of integration vanishes while this was not the case for the stress rþ in Eq. (46). The displacement
velocity u0� is then null as soon as the displacement since u� is null at the initial time. This is perfectly in
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accordance with the continuity of the displacement through a crack tip since u� is by assumption null in
front of the crack. One can then verify

lim
x!lðtÞ

u�ðx; tÞ ¼ u�ðlðtÞ; tÞ ¼ 0: ð59Þ

It does not matter that the integrand in Eq. (56) is singular or not, the boundary condition (59) remains
valid. More generally, Eqs. (55) and (59) together are consistent with the physical boundary conditions in
the vicinity of a crack tip.

5. Conclusion

The elastodynamics field ahead a two-dimensional semi-infinite crack in-plane opening mode with a non-
uniform velocity in an unbounded medium has been formulated under a closed-form by means of a direct
method. As a result, the developed method implicitly takes into account the transonic regime.

However, although only the Mode I was considered, the developed method is also suitable for Modes II
and III propagation.

Acknowledgements

The author is grateful for the support provided by the US Navy.

Appendix A. Note on the result: dðx� lðtÞÞ ¼ g0ðxÞdðt � gðxÞÞ

Let us start with the Dirac delta function

d xð � lðtÞÞ: ðA:1Þ
The double-sided Laplace transform over the x coordinate of Eq. (A.1) writes

exp�s plðtÞ½ 	: ðA:2Þ
The one-sided Laplace transform over time of Eq. (A.2) writesZ þ1

0

exp�s plðtÞ½ þ t	dt: ðA:3Þ

If in Eq. (A.3) one operates the change of variable

t ¼ gðxÞ with x ¼ lðtÞ; ðA:4Þ
then

dt ¼ g0ðxÞdx; ðA:5Þ
and Eq. (A.3) rewritesZ þ1

�1
g0ðxÞ exp�s px½ þ gðxÞ	H gðxÞ½ 	dx ¼

Z þ1

�1
g0ðxÞ exp�s px½ þ gðxÞ	HðxÞdx;

¼
Z þ1

0

g0ðxÞ exp�s px½ þ gðxÞ	dx:
ðA:6Þ

This is exactly the transform of

g0ðxÞdðt � gðxÞÞ: ðA:7Þ
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One has then the following relation between Eq. (A.1) and (A.7)

dðx� lðtÞÞ ¼ g0ðxÞdðt � gðxÞÞ: ðA:8Þ
One can repeat the same reasoning to write the Laplace transform of HðlðtÞ � xÞ under the formZ þ1

0

g0ðxÞ
sp

exp�s px½ þ gðxÞ	dx; ðA:9Þ

where only the product sp differs from Eq. (A.6).

Appendix B. Factorisation of the Wiener–Hopf equation

The factorisation of the function a is elementary. One has

a
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=cd 
 p

p
; a ¼ aþa�: ðB:1Þ

The factorisation of the Rayleigh function R is more complicated but is now became standard (Freund,
1990; Achenbach, 1993). One only gives the following final result

F
 ¼ a


ð1=cR 
 pÞS
ðpÞ
ðB:2Þ

with

S ¼ RðpÞ
jð1=c2R � p2Þ ¼ SþS�; j ¼ 2ð1=c2s � 1=c2dÞ; ðB:3Þ

where

S
 ¼ exp
�1
p

Z 1=cs

1=cd

tg�1
4z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 � 1=c2dÞð1=c2s � z2Þ

p
ð1=c2s � 2z2Þ

" #
dz

z
 p

( )
; ðB:4Þ

and the Rayleigh wave velocity cR is solution of the Rayleigh equation (10).

Appendix C. Note on the analyticity of X
�
f

Let us write �XX�
f from Eqs. (19) and (21) as follows

X
�
f ðp; sÞ ¼

1

p

Z þ1

0

f gðxÞð Þg0ðxÞ exp�s gðxÞ½ þ px	dx ðC:1Þ

with

X
�
H ðp; sÞ ¼

r0

p

Z þ1

0

g0ðxÞ exp�s gðxÞ½ þ px	dx: ðC:2Þ

From Appendix A, the integrals above can write under the form

X
�
f ðp; sÞ ¼

1

p

Z þ1

0

f ðtÞ exp�s plðtÞ½ þ t	dt ðC:3Þ

and

X
�
H ðp; sÞ ¼

r0

p

Z þ1

0

exp�s plðtÞ½ þ t	dt ðC:4Þ

respectively.
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The pole at p ¼ 0 is obvious but, is X
�
f analytic elsewhere?

In a first time, consider the function f as a constant, say r0, as one chose at the beginning in Eq. (13) and
carried out in Eq. (C.2).

Two cases can then be considered: the crack tip either stops after a transient period or accelerates up to a
quasi-steady-state regime and never stops. The first case traduces by

06 lðtÞ6 lðt0Þ ðC:5Þ
and the second by

06 l0ðtÞ < cd; with lim
t!1

l0ðtÞ ¼ mð< cdÞ; i:e: 8e > 0; 9t0=t > t0 ) l0ðtÞ
�� � m

�� < e; ðC:6Þ

where t0 and m are constants, and the derivative l0ðtÞ is monotonic.
In the first case, given s positive, 8p the integrand in Eq. (C.4) is summable (Arsac, 1966) and then the

integral is finite. One concludes that if the crack stops then the integral in Eq. (C.2) has no poles in the
complex p-plane and X

�
H is then regular everywhere.

The second case belongs to the class of self-similar problems when the steady-state regime is taken into
account only. Although it will not be considered here, one can just say that the integration in Eq. (C.4)
becomes elementary. Indeed, with lðtÞ ¼ mt, 8t, Eq. (C.4) becomes

X
�
H ðp; sÞ ¼

r0

spðmp þ 1Þ : ðC:7Þ

It occurs a pole at p ¼ �1=m and the rearrangement of the Wiener-Hopf equation is no longer so easy
(Baker, 1962). Baker partially solved the problem by rewriting it with respect to the crack tip coordiantes.
Partially, because he could not take into account the transonic regime.

As a more realistic example, one could take lðtÞ ¼ mð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ t20

p
� t0Þ which linearly behaves as mðt � t0Þ if

t ! 1. It is then immediate to observe that the integrand in Eq. (C.4) is not summable if ReðpÞ6 1=m, and
X

�
H becomes then regular in ReðpÞ > �1=m only (see Fig. 2). The left- and right-hand sides of the modified

Wiener-Hopf equation (23) are now regular in ReðpÞ > �1=m and �1=m < ReðpÞ < 0 respectively (with
m < cd). Consequently, Eq. (11) is unmodified but Liouville’s theorem, which will help us in the next, loses
all its utility.

This motivated us to replace r0HðtÞ with a function f ðtÞ, which has a bounded support, and define X
�
f in

Eq. (21) as carried out in Eq. (C.1). The integrand in Eq. (C.3) becomes then summable and the function X
�
f

is analytic in the whole complex p-plane, except of course at p ¼ 0.

Appendix D. Note on the behaviour of X
�
f at infinity

From Appendix A, the function X
�
f ðp; sÞ can write under the form

1

p

Z þ1

0

f ðtÞ exp�s plðtÞ½ þ t	dt: ðD:1Þ

But, let us consider first the following integral

1

p

Z þ1

0

exp�s plðtÞ½ þ t	dt: ðD:2Þ

Since by assumption l0ðtÞ < cd, then 8t, lðtÞ < cdt and, given s positive, it follows the inequalities

1

pj j

Z þ1

0

exp�st pcd þ 1½ 	dt < 1

pj j

Z þ1

0

exp�s plðtÞ þ t½ 	dt6 1

pj j

Z þ1

0

expð�stÞdt; ðD:3Þ
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or

1

s pj jð pj jcd þ 1Þ <
1

pj j

Z þ1

0

exp�s pj jlðtÞ þ t½ 	dt6 1

s pj j ðD:4Þ

from which, one immediately concludes that the integral in Eq. (D.2) tends at zero if one lets pj j tend to
infinity. Given the function f positive and bounded, say f ðtÞ < r0, 8t, then the integral in Eq. (D.1) also
tends at zero.

Appendix E. Inversion of the left (1) and right (2) hand sides of Eq. (29)

ð1Þ Inversion of

Z þi1

�i1
srþðx; sÞ exp�s pðx½ � xÞ	dp

With the change of variable first introduced by Cagniard in seismology (Cagniard, 1939)

pðx � xÞ ¼ t ðE:1Þ

and the contour of integration shown in Fig. 4, one deduces from Cauchy’s theorem

s
Z þi1

�i1
�rrþðx; sÞ exp�s pðx½ � xÞ	dp ¼ 2s

Z þi1

0

�rrþðx; sÞ dp
dt

expð�stÞdt;

¼ 2s
x � x

Z þ1

0

�rrþðx; sÞ expð�stÞdt:
ðE:2Þ

The integral on the right-hand side of Eq. (E.2) is trivial. One obtains

2

x � x
�rrþðx; sÞ ðE:3Þ

which is nothing else but the one-sided Laplace transform over time of ð2=ðx � xÞÞrþðx; tÞ. We stress here
that it is anticipated that rþ can be singular only on x ¼ x.

ð2Þ Inversion of
1

2ip

Z þi1

�i1
RþðpÞ exp�s gðmÞ½ þ pðm � xÞ	dp

How to invert this kind of integral is now became standard in seismology (Aki and Richards, 1980) and
elastodynamics (Achenbach, 1993). Again, as above, from the new change of variable

gðmÞ þ pðm � xÞ ¼ t ðE:4Þ

and the contour of integration shown in Fig. 5, one deduces from Cauchy’s theorem

1

2ip

Z þi1

�i1
RþðpÞ exp�s gðmÞ½ þ pðm � xÞ	dp ¼

Z þ1

0

1

p
1

m � x
Im½Rþ pðtÞð Þ	H tð � gðmÞÞ expð�stÞdt;

ðE:5Þ

where

pðtÞ ¼ t � gðmÞ
m � x

ðE:6Þ

and Scharwz’s reflexion principle, i.e. RþðpÞ ¼ Rþð�ppÞ has been used. The over-bar refers here to the con-
jugate imaginary part.
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Fig. 4. Contour of integration in the complex p-plane to reduce the inner integral on the right-hand side of Eq. (29). In bold are

represented the branch cuts of aþ and bþ, and their branch points at �1=cd and�1=cs respectively. The rays of the truncated large half-
circle and small circle tend at infinity and zero respectively.

Fig. 5. Contour of integration in the complex p-plane to reduce the inner integral on the left-hand side of Eq. (29). The rays of the two

quarter-circles tend at infinity. The case x � x > 0 is represented.
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The right-hand side of Eq. (E.5) is nothing else but the one-sided Laplace transform over time of

1

p
1

m � x
Im½Rþ pðtÞð Þ	H tð � gðmÞÞ: ðE:7Þ
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